companydirectorylist.com  Global Business Directories and Company Directories
Search Business,Company,Industry :


Country Lists
USA Company Directories
Canada Business Lists
Australia Business Directories
France Company Lists
Italy Company Lists
Spain Company Directories
Switzerland Business Lists
Austria Company Directories
Belgium Business Directories
Hong Kong Company Lists
China Business Lists
Taiwan Company Lists
United Arab Emirates Company Directories


Industry Catalogs
USA Industry Directories














  • Dehazing Images Using Vision Transformer Algorithm - IEEE Xplore
    Image dehazing is an important task to obtain clear images from blurry vision in low vision individuals Although traditional methods and deep learning have mad
  • DehazeFormer 模型详解-CSDN博客
    RLN 提供了一个名为 detach_grad 的选项,允许用户选择是否将标准差和均值的计算从主梯度流中分离出来。 如果启用了这个选项,则在计算 rescale 和 rebias 时会使用 detach() 方法,这可以防止这些计算影响到上游梯度的传播,有助于稳定训练过程,特别是在某些复杂或不稳定的学习场景下。 传统LN 通常直接作用于张量的最后一维(即通道维度),并对所有样本和空间位置共享相同的统计信息(均值和方差)。 RLN 在计算均值和标准差时考虑了所有维度(包括批量、高度和宽度),并且为每个样本单独计算这些统计量。 此外,它还通过额外的卷积层生成个性化的尺度和平移参数,这使得RLN更加灵活和强大。 可以把 RLN 理解为一个智能的“图像调色师”:
  • DehazeFormer. DehazeFormer is a state-of-the-art deep… | by . . . - Medium
    DehazeFormer is a state-of-the-art deep learning model designed for single image dehazing, utilizing Vision Transformers (ViT), particularly the Swin Transformer While CNNs have traditionally
  • Physical-priors-guided DehazeFormer - ScienceDirect
    To address these problems, in this study, we propose a novel DehazeFormer guided by physical priors, named SwinTD-Net, which is trained according to supervised and self-supervised learning, and combines the advantages of physical priors and transformers
  • JOURNAL OF LA Vision Transformers for Single Image Dehazing
    This paper introduces various improvements for Swin Trans- former applied to image dehazing, and the proposed Dehaze- Former achieves superior performance on several datasets
  • Vision Transformers for Single Image Dehazing - 知乎
    本文提出了一种用于图像去雾的Transformer结构-- DehazeFormer。 对swin-T主要改进有: 在 SOTS indoor set上,本文最小的模型的表现优于FFA-Net,同时只有其25%的参数和5%的计算量。 DehazeFormer最大的模型是首次在 SOTS indoor 数据集上PNSR超过40dB的方法,大大超过了以往的方法。 ViT在大多数领域的表现都超过了CNN的模型,但是在图像去雾领域,目前还没有超越CNN方法的Transformer模型,因此本文基于 swin-Transformer 提出了一种用于去雾的Transformer结构--DehazeFormer。
  • Image Dehazing Transformer with Transmission-Aware 3D Position Embedding
    We bring a haze density-related prior into Trans-former via a novel transmission-aware 3D position embed-ding module, which not only provides the relative position but also suggests the haze density of different spatial re-gions




Business Directories,Company Directories
Business Directories,Company Directories copyright ©2005-2012 
disclaimer