|
- 求微分不等式f(x) gt;f(x)解集? - 知乎
首先,我们可以将微分不等式转化为标准形式,即:f'(x) - f(x) < 0然后,我们可以使用分离变量的方法来求解这个微分方程。 将其转化为:dy dx = f'(x) - f(x)dy dx + f(x) = f'(x)这是一个一阶非齐次线性微分方程。 我们可以使用常数变易法来求解它。 首先,我们设解为 y = C(x)e^x,其中 C(x) 是待定函数。 将 y
- 常微分方程求解 - 知乎
常微分方程 (ordinary differential equation, ODE),指的是方程中包括变量 的函数 以及其导数,并且只包含一个变量。如果只包含一阶导,则称为一阶常微分方程。
- 常微分方程 - 知乎
在数学分析中,常微分方程(英语:ordinary differential equation,简称ODE)是未知函数只含有一个自变量的微分方程。
- geogebra怎么解常微分方程组? - 知乎
geogebra 里面有: SolveODE 命令 SolveODE Command ,其中 CAS systax (需要在geogebra CAS窗口里输入)里提到可以解 first or second order ODE 也有数值解 NSolveODE NSolveODE Command 但我微分方程几乎没用过,我那时候本科高数主要就是微分和积分,微分方程简单带过。geogebra 里解微分方程也几乎没用过。
- 用matlab如何解带参数的微分方程? - 知乎
微分方程带参数,怎样用matlab解呢?例如图片里这个。最后要解出来I和V1 V2 的表达式,可以带着未知参量…
- 如何通俗理解常微分方程的通解与特解? - 知乎
这个东西我们回到一般的 线性方程组 的解的结构比较好一点,毕竟两者相通。 对于 齐次方程组 而言,这个通解有很好的性质,以至于我们会去研究所谓的 核空间, 它本身是线性空间。 非齐次呢,这个特解为什么会多出来,个人理解,非齐次的方程本身就带有 平移 的感觉,这里的话,由于齐次
|
|
|