|
- Fastest way to compute Arctan2 on an FPGA
Rip Van Winkle here -- is the fastest and least-footprint way to compute an arctan on an FPGA still to use CORDIC? Or is there a way to leverage block RAM and DSP blocks to speed and or reduce the
- signal analysis - Why is CORDIC an approach that can work with every . . .
I want to know Why CORDIC is an approach that can work with every sample and thus be more optimized for lower SNR condition frequency divider
- CORDIC-Taylor-DDS algorithms - Signal Processing Stack Exchange
CORDIC uses LUT and numerical methods But I don't get high resolution signals Taylor is fully numerical methods However if you don't use 48 or 64 bits, you don't get high resolution signals However DDS works wonder with 64 LUT However I don't understand that why we use CORDIC or Taylor algorithm for creating sinus signal?
- methods of computing fixed point atan2 on FPGA
I am in need of computing atan2(x,y) on an FPGA with a continuous input output stream of data I managed to implement it using unrolled, pipelined CORDIC kernels, but to get the accuracy I need, I
- Efficient Magnitude Comparison for Complex Numbers
3 CORDIC CORDIC (COordinate Rotation DIgital Computer) algorithms work by carrying out approximate rotations of the points about the origin, with each iteration roughly halving the absolute value of the rotation angle Here is one such algorithm for the magnitude comparison problem
- Best way to implement variable phase shift on FPGA?
I have an incoming digitally sampled sine wave pulse, so my FPGA has the ADC level from an I and Q channel I want to be able to shift the phase by some arbitrary amount What's the most efficient
- 90 Degree Phase Shift Rotation Algorithm for SDR
Samp5: 360 -> 0 degree rotation Samp6: 90 degree rotation For a pure 90 degree phase shift all you need to do is: Ir = -Qi, Qr = Ii at every sample It might be helpful for you to read up on cordic rotation Although you might not be interested in the cordic algorithm it will provide a good overview of rotations and frequency shifts
- modulation - Numerically Controlled Oscillator (NCO) for phasor . . .
There are many other memory optimizations as well such as interpolation between values (most common), and to mention without explanation, Hutchison Algorithm and Sunderland Algorithm, as well as the Cordic Rotator previously mentioned
|
|
|