|
- CLEVER: A Curated Benchmark for Formally Verified Code Generation
TL;DR: We introduce CLEVER, a hand-curated benchmark for verified code generation in Lean It requires full formal specs and proofs No few-shot method solves all stages, making it a strong testbed for synthesis and formal reasoning
- Clever: A Curated Benchmark for Formally Verified Code Generation
We introduce CLEVER, the first curated benchmark for evaluating the generation of specifications and formally verified code in Lean The benchmark comprises of 161 programming problems; it evaluates both formal speci-fication generation and implementation synthesis from natural language, requiring formal correctness proofs for both
- Submissions | OpenReview
Promoting openness in scientific communication and the peer-review process
- EvoTest: Evolutionary Test-Time Learning for Self-Improving Agentic . . .
A fundamental limitation of current AI agents is their inability to learn complex skills on the fly at test time, often behaving like “clever but clueless interns” in novel environments This severely limits their practical utility To systematically measure and drive progress on this challenge, we first introduce the Jericho Test-Time Learning (J-TTL) benchmark J-TTL is a new evaluation
- STAIR: Improving Safety Alignment with Introspective Reasoning
One common approach is training models to refuse unsafe queries, but this strategy can be vulnerable to clever prompts, often referred to as jailbreak attacks, which can trick the AI into providing harmful responses Our method, STAIR (SafeTy Alignment with Introspective Reasoning), guides models to think more carefully before responding
- Evaluating the Robustness of Neural Networks: An Extreme Value. . .
Our analysis yields a novel robustness metric called CLEVER, which is short for Cross Lipschitz Extreme Value for nEtwork Robustness The proposed CLEVER score is attack-agnostic and is computationally feasible for large neural networks
- Weakly-Supervised Affordance Grounding Guided by Part-Level. . .
In this work, we focus on the task of weakly supervised affordance grounding, where a model is trained to identify affordance regions on objects using human-object interaction images and egocentric
- Do Histopathological Foundation Models Eliminate Batch Effects? A . . .
Deep learning has led to remarkable advancements in computational histopathology, e g , in diagnostics, biomarker prediction, and outcome prognosis Yet, the lack of annotated data and the impact of batch effects, e g , systematic technical data differences across hospitals, hamper model robustness and generalization Recent histopathological foundation models --- pretrained on millions to
|
|
|