|
- 《凸优化》这本书怎么学习或阅读? - 知乎
Boyd 的《Convex Optimization》确实是一本好书,当年在数学系读书的时候,很多老师也都推荐这本书。这本书的优点是大而全,拿在手上就能感受到沉甸甸的重量。。。我自己也曾经想好好读一读这本书,尝试了几次都没有完整地坚持下来。。 究其原因在于,对于初学者来说,如此厚重的书有时却不
- 几何光学透镜的焦距如何看正负? - 知乎
5 弯月形凸透镜 (Meniscus convex lens) 这种类型的透镜,两个表面曲率半径符号相同,但是凸面曲率半径绝对值更小,由式1可知,焦距恒为正值。 6 弯月形凹透镜 (Meniscus concave lens) 这种类型的透镜,两个表面曲率半径符号相同,但是凸面曲率半径绝对值更大,它与双凸透镜类似,焦距正负随厚度变化
- 在数学中一个非凸的最优化问题是什么意思? - 知乎
1,首先大家需要知道Convex VS Non-Convex的概念吧? 数学定义就不写了,介绍个直观判断一个集合是否为Convex的方法,如下图:
- 中科大凸优化 知识点笔记 - 知乎
本课程整理自中国科学技术大学2011年课程《最优化理论》, 主讲人:凌青老师 cse sysu edu cn content 课程主要教材 Boyd S , Vandenberghe L Convex O…
- 如何理解SCA(successive convex approximation)方法? - 知乎
如何理解SCA(successive convex approximation)方法? 在论文中经常看到非凸问题用到SCA方法但是网络上的资料很少,而英文的文献比较难理解 显示全部 关注者 36
- 为什么核范数能凸近似矩阵的秩?为什么核范数是凸的? - 知乎
其实矩阵的nuclear norm是rank的convex relaxation可以看作是上面的推论。 说一下idea,一个m*n的矩阵 M ,有奇异值分解(SVD) M = U \Sigma V^T 。
- 如何从零开始学习凸优化? - 知乎
最近迷上了凸优化里面的证明,今天分享Stephen Boyd巨作《Convex Optimization》中有关凸集分离超平面定理的证明。 虽然书中也给出了定理在special case下的证明思路,但对于小白来说,一开始看书中的推导过程可能不是很友好,因为有几步看起来很tricky,不容易想到
- 如何从零开始学习凸优化? - 知乎
如何从零开始学习凸优化? 教材:Convex Optimization(boyd) 数学基础:高数 线性代数 概率论与数理统计 矩阵论(本硕期间上过的数学课) 学习目的:做与机… 显示全部 关注者 2,843 被浏览
|
|
|