|
- Contents THE GALOIS ACTION ON DESSIN - University of Chicago
We introduce regular dessins, which are dessins that satisfy stringent symmetry requirements that lead to very nice behavior of the cartographic and automorphism groups, as well as a Galois correspondence
- Dessins d’enfants on the Riemann sphere Abstra
Grothendieck [G] gives a sketch of an exploration of the connections between algebraic curves defined over Q and their fields of definition, and what he calls “dessins d’enfants”, which might be conveniently described as scribbles on topological surfaces the precise definition here
- Les dessins de Léonard de Vinci - Archive. org
En parcourant la bibliographie, pourtant succincte, qu'il trouvera ci-après, le lecteur comprendra l'impossibilité qu'il y aurait à entreprendre en quelques lignes, et seulement à propos des dessins appartenant au Louvre, une étude de l'œuvre dessiné de Léonard de Vinci, dont le départ avec l'œuvre de ses
- Dessins dEnfants - GitHub Pages
We start with a general introduction to the theory of dessins d’enfants (children’s drawings) in relation to number theory, geometry, and art We then give an explicit example and describe current work in creating a database of these mathematical objects
- 496E74726F64756374696F6E20746F20436F6D70616374205269656D616E6 . . .
The present text is an expanded version of the lecture notes for a course on Riemann surfaces and dessins d’enfants which the authors have taught for several years to students of the masters degree in mathematics at the Universidad Aut ́onoma de Madrid
- Riemann surfaces and dessins d’enfan - Universiteit Utrecht
es Belyi's theorem and dessin d'enfants We give a proof of Belyi's theorem, which connect compact Riemann surfaces (and their corresponding algebrai curves) to the dessins of Grothendieck The last part of Chapter 5 will be devoted
- What Is. . . a Dessin dEnfant?, Volume 50, Number 7
The deepest open question in the theory of dessins is this: Can the Galois orbits of dessins be distinguished by combi-natorial or topological invariants? That is, is there an effective way to tell whether two dessins belong to the same Galois orbit?
|
|
|