companydirectorylist.com  Global Business Directories and Company Directories
Search Business,Company,Industry :


Country Lists
USA Company Directories
Canada Business Lists
Australia Business Directories
France Company Lists
Italy Company Lists
Spain Company Directories
Switzerland Business Lists
Austria Company Directories
Belgium Business Directories
Hong Kong Company Lists
China Business Lists
Taiwan Company Lists
United Arab Emirates Company Directories


Industry Catalogs
USA Industry Directories














  • 梯度(gradient)到底是个什么东西?物理意义和数学意义分别是什么?
    我会使用尽量少的数学符号描述 梯度, 着重于意义而非计算。一个直观的例子,在机器学习领域有个术语叫「梯度下降」,你可以想象在群山之中,某个山的半山腰有只小兔子打算使用梯度下降的思路去往这片群山最深的山谷里找水喝。 我们用 变化率 来描述下山时各个方向的山路有多陡峭,往下
  • 梯度(gradient)到底是个什么东西?物理意义和数学意义分别是什么? - 知乎
    为了降低随机梯度的方差,从而使得迭代算法更加稳定,也为了充分利用高度优化的矩阵运算操作,在实际应用中我们会同时处理若干训练数据,该方法被称为小批量梯度下降法 (Mini- Batch Gradient Descent)。 假设需要同时处理m个训练数据 则目标函数及其梯度为
  • 如何评价 Meta 新论文 Transformers without Normalization? - 知乎
    Normalization这个事得好好掰扯掰扯。 上古时期,网络经常在初始几个iteration之后,loss还没下降就不动,必须得把每一层的gradient与weight的比值打印出来,针对性地调整每一层的初始化才能不崩。
  • 如何理解 natural gradient descent? - 知乎
    看到一篇文章写得非常浅显易懂: What is the natural gradient, and how does it work? 总结一下: 拿神经网络中的反向传播算法举例,我们计算各个权值w关于损失函数的导数,得到一个梯度向量,然后沿着这个梯度的反方向更新权值一小段距离,如此不断重复来使损失函数收敛到(局部)最小值。 问题就在于
  • 如何理解策略梯度(Policy Gradient)算法? - 知乎
    Actor-Critic算法结合了策略梯度(Policy Gradient)方法和值函数估计的优点,旨在通过两个不同的神经网络来学习:一个用于学习策略(Actor),另一个用于评估状态的价值(Critic)。
  • 梯度(gradient)到底是个什么东西?物理意义和数学意义分别是什么?
    梯度是雅可比矩阵的一种特殊形式,当m=1时函数的雅可比矩阵就是梯度,这个概念原是为场论设定的,任何场都可以用来理解梯度,后来被引用到数学中用来指明函数在指定点的变量率最快的方向和大小,是一种变化效率的数字抽象。
  • 梯度(gradient)到底是个什么东西?物理意义和数学意义分别是什么?
    1 多元函数偏导数的数值解 在程序当中,利用数值方法求出各个自变量偏导数的近似解,其方法和步骤同前面讲过的导数的数值解求法并无二致:把其余的自变量固定,就将偏导数的求解方法等价为了导数的数值求解方法,我们以简单的二元函数 为例,分别来看看如何利用python求解偏导数 和 ,并
  • 机器学习 | 近端梯度下降法 (proximal gradient descent)
    2 2 近端梯度下降 (proximal gradient descent) 对于优化问题 ,变量 的迭代递推公式为 其中,变量上标的 表示当前迭代次数。 迭代递推公式证明过程(涉及知识:泰勒展开): 注意:由于公式第三行中的 和第四行中的 均与决策变量 无关,因此公式第三行等于公式第四




Business Directories,Company Directories
Business Directories,Company Directories copyright ©2005-2012 
disclaimer