companydirectorylist.com  Global Business Directories and Company Directories
Search Business,Company,Industry :


Country Lists
USA Company Directories
Canada Business Lists
Australia Business Directories
France Company Lists
Italy Company Lists
Spain Company Directories
Switzerland Business Lists
Austria Company Directories
Belgium Business Directories
Hong Kong Company Lists
China Business Lists
Taiwan Company Lists
United Arab Emirates Company Directories


Industry Catalogs
USA Industry Directories














  • 线性代数 (det)是什么意思? - 百度知道
    线性代数 (det)是什么意思?A矩阵的行列式(determinant),用符号det(A)表示。行列式在数学中,是由解线性方程组产生的一种算式其定义域为nxn的矩阵 A,取值为一个标量,写作det(A)或 | A | 。
  • det. 是什么意思 - 百度知道
    det的意思是限定词。 限定词是在名词词组中对名词中心词起特指、类指以及表示确定数量和非确定数量等限定作用的词类。
  • linear algebra - Why is $\det⁡ (-A)= (-1)^n\det (A)$? - Mathematics . . .
    Typically we define determinants by a series of rules from which $\det(\alpha A)=\alpha^n\det(A)$ follows almost immediately Even defining determinants as the expression used in Andrea's answer gives this right away On the other hand, the arguments showing $\det(AB)=\det(A)\det(B)$ are more elaborate $\endgroup$ –
  • 线性代数中det代表什么 - 百度知道
    线性代数中det代表什么在学习线性代数时,det是一个非常重要的概念,它代表的是一个行列式的计算结果,是一个数值。具体而言,如果有一个矩阵A,那么A的行列式,通常用符号det(A)来表示。这个值对矩阵的性质有着决定
  • $\\det(I+A) = 1 + tr(A) + \\det(A)$ for $n=2$ and for $n gt;2$?
    Stack Exchange Network Stack Exchange network consists of 183 Q A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers
  • linear algebra - How to prove $\det \left (e^A\right) = e . . .
    Stack Exchange Network Stack Exchange network consists of 183 Q A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers
  • 矩阵中的det是什么意思? - 百度知道
    det是determinant的缩写 是行列式的定义 行列式的定义是:一个n阶矩阵 那么它的行列式是一串和,每个加法元是n矩阵元素相乘 这n个是这样取的:第一行取第1个的话 第二行可从剩下的n-1个取 以此类推,到最后一行只有一个可以取 所以有n的阶乘个加法元 同时,每个加法元的符号还要看你取的这n个数字的
  • linear algebra - Describe $\det (A^*)$ in terms of $\det (A . . .
    In this case, obviously, $\det(A)=\det(A^*)$, but this is not generally true You can decompose taking the conjugate transpose in two steps: first conjugate each entry, then transpose




Business Directories,Company Directories
Business Directories,Company Directories copyright ©2005-2012 
disclaimer