|
- Learning Intents behind Interactions with Knowledge Graph for . . . - GitHub
Knowledge Graph-based Intent Network (KGIN) is a recommendation framework, which consists of three components: (1)user Intent modeling, (2)relational path-aware aggregation, (3)indepedence modeling
- Learning Intents behind Interactions with Knowledge Graph for . . .
In this study, we explore intents behind a user-item interaction by using auxiliary item knowledge, and propose a new model, Knowledge Graph-based Intent Network (KGIN)
- 论文阅读——学习与知识图交互背后的意图以供推荐
本文提出KGIN,一种基于图神经网络的模型,通过细粒度的意图理解和关系路径聚合,提升推荐系统的性能和可解释性。 KGIN通过用户意图建模和关系路径感知,从KG中捕捉用户行为背后的真实意图,对比现有方法如KGAT和CKAN,实验结果证明其优势。
- KGIN:Learning Intents behind Interactions with Knowledge . . . - 掘金
我们将这些改进归功于KGIN的关系建模: (1)通过揭示用户意图,KGIN能够更好地描述用户和项目之间的关系,并产生更强大的用户和项目表示。
- KGIN:Learning Intents behind Interactions with Knowledge Graph for . . .
KGIN:Learning Intents behind Interactions with Knowledge Graph for Recommendation
- KGIN:基于知识图谱交互学习意图的推荐 (WWW 21 - CSDN博客
该研究提出了一种新的模型KGIN(Knowledge Graph-based Intent Network),旨在解决基于知识图谱的推荐系统中用户意图的精细建模和关系路径语义的保留问题。
- KOLN | Nebraska Local News, Weather, Sports | Lincoln, NE
Contact Us KOLN 840 North 40th Lincoln, NE 68503 (402) 467-4321 KOLN Public Inspection File KGIN Public Inspection File publicfile@1011now com - (402) 467-4321 FCC Applications Privacy Policy
- KGIN
进行分析 · KGIN在三个数据集上都实现了显著的改进,总结为如下的原因: (1)揭示了用户intent,KGIN能够更好的刻画用户和项目之间的关系,以此得到更强大的用户和项目表示。 相反,基线模型忽略了隐藏的用户意图,并将用户项目边建模为收集信息的同质
|
|
|