- Legendre polynomials - Wikipedia
In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications
- Legendre 多项式 - 知乎
第一次接触勒让德多项式是在大三学习量子力学的时候,没办法,数学基础太差。 随笔记录一下Legendre 多项式的性质: 最简单的多项式基底 x^n 从多项式 \left\ {1, x, x^ {2}, \ldots, x^ {n}, \ldots\right\} 出发,…
- 勒让德多项式_百度百科
中文名 勒让德多项式 外文名 Legendre Polynomials 所属领域 数理科学
- Lecture notes on Legendre polynomials: their origin and main properties
In fact, Legendre polynomials can be renormalized in order to form a complete set of orthonormal polynomials P ^ n (x) on the interval [1, 1], i e an orthonormal basis
- Legendre 多项式 | 中文数学 Wiki | Fandom
Legendre 多项式(勒让德多项式)是在对微分方程的研究中引入的一类特殊的函数。 它是 Legendre 方程的多项式解。
- Legendre, Adrien-Marie - Encyclopedia of Mathematics
Legendre gave very little justification for choosing the sum of the squared errors as his optimality criterion other than its computational simplicity However he did note that it yields the arithmetic mean when there are a set of direct observations on a single unknown quantity
- Adrien-Marie Legendre - Wikipedia
Adrien-Marie Legendre ( ləˈʒɑːndər, - ˈʒɑːnd ; [3] French: [adʁiɛ̃ maʁi ləʒɑ̃dʁ]; 18 September 1752 – 9 January 1833) was a French mathematician who made numerous contributions to mathematics
- 9. 10 Legendre多项式 - 知乎
此时,适当的选定这个多项式的最高次幂系数 a_n , 所得的多项式称为 n 阶Legendre多项式或第一类Legendre函数,记做 P_n (x) , 也就是我们后面会讨论的Legendre多项式。
|