companydirectorylist.com  Global Business Directories and Company Directories
Search Business,Company,Industry :


Country Lists
USA Company Directories
Canada Business Lists
Australia Business Directories
France Company Lists
Italy Company Lists
Spain Company Directories
Switzerland Business Lists
Austria Company Directories
Belgium Business Directories
Hong Kong Company Lists
China Business Lists
Taiwan Company Lists
United Arab Emirates Company Directories


Industry Catalogs
USA Industry Directories














  • What is the norm of a complex number? [duplicate]
    In number theory, the "norm" is the determinant of this matrix In that sense, unlike in analysis, the norm can be thought of as an area rather than a length, because the determinant can be interpreted as an area (or volume in higher dimensions ) However, the area volume interpretation only gets you so far
  • Understanding L1 and L2 norms - Mathematics Stack Exchange
    I am not a mathematics student but somehow have to know about L1 and L2 norms I am looking for some appropriate sources to learn these things and know they work and what are their differences I am
  • What is the difference between the Frobenius norm and the 2-norm of a . . .
    For example, in matlab, norm (A,2) gives you induced 2-norm, which they simply call the 2-norm So in that sense, the answer to your question is that the (induced) matrix 2-norm is $\le$ than Frobenius norm, and the two are only equal when all of the matrix's eigenvalues have equal magnitude
  • 2-norm vs operator norm - Mathematics Stack Exchange
    The operator norm is a matrix operator norm associated with a vector norm It is defined as $||A||_ {\text {OP}} = \text {sup}_ {x \neq 0} \frac {|A x|_n} {|x|}$ and different for each vector norm In case of the Euclidian norm $|x|_2$ the operator norm is equivalent to the 2-matrix norm (the maximum singular value, as you already stated) So every vector norm has an associated operator norm
  • matrices - Orthogonal matrix norm - Mathematics Stack Exchange
    The original question was asking about a matrix H and a matrix A, so presumably we are talking about the operator norm The selected answer doesn't parse with the definitions of A and H stated by the OP -- if A is a matrix or more generally an operator, (A,A) is not defined (unless you have actually defined an inner product on the space of
  • The 1-Norm, the 2-Norm, and the Max-Norm - Mathematics Stack Exchange
    The unit circle, also the unit circle in the $\infty$ norm, which is a square; finally, the unit circle in the $1$ norm, which is a square rotated $45^\circ $ Anyway, get some graph paper and draw some pictures
  • How are $C^0,C^1$ norms defined - Mathematics Stack Exchange
    How are $C^0,C^1$ norms defined? I know $L_p,L_\\infty$ norms but are the former defined
  • How do I find the norm of a matrix? - Mathematics Stack Exchange
    I learned that the norm of a matrix is the square root of the maximum eigenvalue multiplied by the transpose of the matrix times the matrix Can anybody explain to me in further detail what steps I need to do after finding the maximum eigenvalue of the matrix below?




Business Directories,Company Directories
Business Directories,Company Directories copyright ©2005-2012 
disclaimer