|
- GitHub - PaddlePaddle PaddleOCR: Awesome multilingual OCR and Document . . .
PaddleOCR converts documents and images into structured, AI-friendly data (like JSON and Markdown) with industry-leading accuracy —powering AI applications for everyone from indie developers and startups to large enterprises worldwide
- PaddleOCR 快速开始 - PaddleOCR 文档
说明: 本文主要介绍PaddleOCR wheel包对PP-OCR系列模型的快速使用。如要体验文档分析相关功能,请参考 PP-Structure快速使用教程。此外,飞桨低代码开发工具 PaddleX 依托PaddleOCR的先进技术,支持了OCR领域的 低代码全流程开发能力,大幅减少开发时间和难度,同时将 文本图像智能分析、通用OCR、通用
- Overview - PaddleOCR Documentation
PP-OCR is a self-developed practical ultra-lightweight OCR system, which is slimed and optimized based on the reimplemented academic algorithms, considering the balance between accuracy and speed PP-OCR is a two-stage OCR system, in which the text detection algorithm is DB, and the text recognition algorithm is CRNN
- PaddleOCR: 基于飞桨的OCR和文档解析工具库,包含 . . . - Gitee
On May 20, 2025, the PaddlePaddle team unveiled PaddleOCR 3 0, fully compatible with the official release of the PaddlePaddle 3 0 framework
- paddleocr · PyPI
Universal-Scene Text Recognition Model PP-OCRv5: A single model that handles five different text types plus complex handwriting Overall recognition accuracy has increased by 13 percentage points over the previous generation Online Demo
- [paddleocr]ppocrv5使用教程-CSDN博客
OCR(光学字符识别,Optical Character Recognition)是一种将图像中的文字转换为可编辑文本的技术。 它广泛应用于文档数字化、信息提取和数据处理等领域。 OCR 可以识别印刷文本、手写文本,甚至某些类型的字体和符号。 通用 OCR 产线用于解决文字识别任务,提取图片中的文字信息以文本形式输出,本产线支持PP-OCRv3、PP-OCRv4、PP-OCRv5 模型 的使用,其中默认模型为 PaddleOCR3 0 发布的 PP-OCRv5_mobile 模型,其在多个场景中较 PP-OCRv4_mobile 提升 13 个百分点。 通用OCR产线中包含以下5个模块。 每个模块均可独立进行训练和推理,并包含多个模型。 有关详细信息,请点击相应模块以查看文档。
- OVERVIEW ON PPOCR ARCHITECTURE - Medium
In this article, I will give you an overview of the paddle OCR model architecture and image processing on the paddle detection Let’s get into the paddle OCR !! If you are reading this article
- Releases · PaddlePaddle PaddleOCR - GitHub
Added PP-OCRv5 Multilingual Text Recognition Model, which supports the training and inference process for text recognition models in 37 languages, including French, Spanish, Portuguese, Russian, Korean, etc Average accuracy improved by over 30% Details
|
|
|