|
- 一文读懂:大模型RAG(检索增强生成)含高级方法
RAG 管道的关键部分是搜索索引,它存储了在上一步中获得的向量化内容。 最原始的实现是使用平面索引 — 查询向量和所有块向量之间的暴力计算距离。 为了实现1w+元素规模的高效检索,搜索索引 应该采用 向量索引,比如 faiss 、 nmslib 以及 annoy。
- RAG-检索增强生成从入门到实战,看这一篇就够了 - 知乎
RAG(Retrieval-Augmented Generation)技术通过从外部知识库中检索相关信息,并将其作为提示(Prompt)输入给大型语言模型(LLMs),以增强模型处理知识密集型任务的能力。这种方法特别适用于那些高度依赖专业知识的任务,能够显著提升回答的精确度。 RAG的主要模块
- 检索增强生成(RAG)有什么好的优化方案? - 知乎
RAG优化分为两个方向:RAG基础功能优化、RAG架构优化。 我们分别展开讨论。 一、RAG基础功能优化 对RAG的基础功能优化,我们要从RAG的流程入手 [1],可以在每个阶段做相应的场景优化。
- RAG是什么? - 知乎
然而用户的实际需求和数据是多样的,导致通用RAG在实践中仍面临多重挑战,如检索信息缺失、复杂PDF解析困难、无法提取特定内容、格式处理不佳、统计类问答能力缺失等。 这些问题削弱了RAG在实际场景中的精度与可信度,亟需通过技术创新与优化进行解决。中国联通发挥其丰富业务场景和广泛
- GraphRAG:知识图谱+大模型
Graph RAG是一种基于知识图谱的 检索增强技术,通过构建图模型的知识表达,将实体和关系之间的联系用图的形式进行展示,然后利用大语言模型 LLM进行检索增强。 Graph RAG 将知识图谱等价于一个超大规模的词汇表,而实体和关系则对应于单词。
- rag要怎么入门学习,只会用gpt? - 知乎
RAG自2020年由Facebook AI Research推出后,它在解决大语言模型的“幻觉”问题上起到了关键作用。 有时候大模型会一本正经地胡说八道,但RAG通过从外部知识库中检索相关信息,让模型的回答更加靠谱。
- RAG的底层原理是什么? - 知乎
本篇文章我将和大家聊聊RAG知识库系统的核心原理,用幽默详细的语言向大家分享RAG是如何让大语言模型变得更专业。 一、检索增强生成(RAG)是什么? RAG(Retrieval-Augmented Generation, 检索增强生成) 是一种将传统信息检索系统与大语言模型相结合的技术架构。
- 如果构建行业垂直大模型,到底是用RAG还是微调? - 知乎
RAG检索能力 (Retrieval Ablation Study)实验评估了RAG的检索能力。 结果表明,当检索3个相关片段时,召回率可达80%以上。 即使文档数量增加,RAG仍能以75%以上的召回率检索相关内容。 模型微调 (Fine-tuning)实验对比了微调模型和基模型在农业领域的表现。
|
|
|