companydirectorylist.com  Global Business Directories and Company Directories
Search Business,Company,Industry :


Country Lists
USA Company Directories
Canada Business Lists
Australia Business Directories
France Company Lists
Italy Company Lists
Spain Company Directories
Switzerland Business Lists
Austria Company Directories
Belgium Business Directories
Hong Kong Company Lists
China Business Lists
Taiwan Company Lists
United Arab Emirates Company Directories


Industry Catalogs
USA Industry Directories














  • Smart Solutions in Graphites Fiber Composites | SGL Carbon
    SGL Carbon specializes in carbon-based materials and products We offer our customers tailor-made solutions made of specialty graphite, carbon fibers and composites for a wide range of applications in future-oriented markets such as sustainable mobility, renewable energy and digitalization
  • GitHub - sgl-project sglang: SGLang is a fast serving framework for . . .
    SGLang is a fast serving framework for large language models and vision language models - sgl-project sglang
  • [2010. 10783] Self-supervised Graph Learning for Recommendation
    We term this new learning paradigm as \textit {Self-supervised Graph Learning} (SGL), implementing it on the state-of-the-art model LightGCN Through theoretical analyses, we find that SGL has the ability of automatically mining hard negatives
  • SIGIR‘21|SGL基于图自监督学习的推荐系统 - CSDN博客
    本篇文章主要介绍王翔、何向南老师团队在SIGIR2021上发表的文章SGL,Self-supervised Graph Learning for Recommendation [1]。 这篇文章提出了一种应用于用户-物品二分图推荐系统的图自监督学习框架。
  • sglcarbon. cn | SGL Carbon
    欢迎来到西格里中国网站 在接下来的页面中,我们将为您介绍西格里在中国的活动概况。如果您想了解更多关于我们的信息,请随时与我们联系。 联系方式
  • 德国SGL Carbon公司
    它是世界领先的碳材料产品制造商之一。 其产品范围涵盖碳和石墨材料、解决方案、碳纤维和复合材料等。 SGL Carbon在全球拥有29个生产基地(欧洲16个,北美8个,亚洲5个),并在100多个国家 地区设有服务网络。
  • [57] SGL: 在 GCN 推荐模型中加入自监督学习 - 知乎
    这种既包含 GCN 又包含自监督学习的范式称为 SGL (Self-supervised Graph Learning)。 SGL 引入自监督学习的方式很简单,就是在原来目标函数 (损失函数)基础上再增加一个自监督损失函数。 自监督学习的重点是构造自监督学习任务,比如 BERT 中的 MLM,MoCo 中的对比学习。
  • SGL: Scalable Graph Learning - GitHub
    SGL allows users to easily implement scalable graph neural networks and evaluate its performance on various downstream tasks like node classification, node clustering, and link prediction




Business Directories,Company Directories
Business Directories,Company Directories copyright ©2005-2012 
disclaimer