Find the derivative of #1 (secx-tanx)#? - Socratic Explanation: As #sec^2x=tan^2x+1#, we have #sec^2x-tan^2x=1# i e # (secx+tanx) (secx-tanx)=1# and #1 (secx-tanx)=secx+tanx# Hence #d (dx) (1 (secx-tanx))=d (dx) (secx+tanx)# = #secxtanx+sec^2x# Answer link You can reuse this answer