copy and paste this google map to your website or blog!
Press copy button and paste into your blog or website.
(Please switch to 'HTML' mode when posting into your blog. Examples: WordPress Example, Blogger Example)
深度学习3D网络---PointNet++ - 半夜打老虎 - 博客园 PointNet++网络结构如图所示,主要包含set abstraction(SA)块,分割网络中上采样的插值操作 (interpolate),其中SA由 sampling layer grouping layer和pointnet layer 构成,接下来依次对其进行介绍。 考虑到点云数量通常较大且数量不一致,PointNet++采用最远点采样(FPS (farthest point sampling ))从原始 N N 个点云中获取 N ′ N ′ 个样本进行特征提取。
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a . . . PointNet++ is a follow-up project that builds on and extends PointNet It is version 2 0 of the PointNet architecture PointNet (the v1 model) either transforms features of individual points independently or process global features of the entire point set
PointNet++ - Stanford University PointNet++ Architecture for Point Set Segmentation and Classification We introduce a type of novel neural network, named as PointNet++, to process a set of points sampled in a metric space in a hierarchical fashion (2D points in Euclidean space are used for this illustration)
【综述】PointNet、PointNet++、 F-PointNet基于深度学习 . . . PointNet 是由斯坦福大学的Charles R Qi等人在《PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation》一文中提出的模型,它可以直接对点云进行处理的,对输入点云中的每一个点,学习其对应的空间编码,之后再利用所有点的特征得到一个全局的点云
PointNet++论文解读以及代码分析(超全) - 知乎 文章核心的一点就是提出了多层次特征提取结构。 具体而言就是在输入点集中利用 farthest point sampling 选择一些点作为中心点,然后围绕每个中心点选择周围的点组成一个区域,将每个区域作为PointNet的一个输入样本,这样就得到了一组该区域的特征。