copy and paste this google map to your website or blog!
Press copy button and paste into your blog or website.
(Please switch to 'HTML' mode when posting into your blog. Examples: WordPress Example, Blogger Example)
What is cutting edge maths? - Mathematics Stack Exchange My maths teacher always keeps telling me about this 'cutting edge maths' that is going on in the world, amazing maths research, etc A lot of the google searches I've done for 'Cutting Edge Mathematics' hasn't returned much useful information, so I've taken to mathematics stack exchange
combinatorics - Let G be a connected graph in which every vertex has . . . The edge v v - v1 v 1 (or v v - v2 v 2 or v v - v3 v 3) was a bridge when V V was removed, connecting v1 v 1 to that component Therefore the deletion of v v - v1 v 1 disconnects G G But this is a contradiction since we said G G has no cut-edge Another method is to first see that G G has no loops; if it did, it would contain a cut-edge
Why can algebraic geometry be applied into theoretical physics? As I progressed in math graduate school specializing in number theory and algebraic geometry, it was astounding to discover a certain class of researchers who were doing very serious and nontrivial cutting-edge stuff connecting algebraic geometry and mathematical physics
When you randomly shuffle a deck of cards, what is the probability that . . . The situation is not the same as in the birthday paradox The birthday paradox works because the two identical birthdays may appear between any two of the persons However, in your experiment, you demand that you are one of the two persons involved in the same card deck A situation analogous to the birthday paradox would be given by the question "what is the chance that over the last 600
Finding the spherical coordinates for the edge obtained by cutting a . . . 1 I am searching the spherical coordinates for the circular edge that are obtained when a sphere is cut at a certain position with a plane The sphere has herby a radius r r and is focused at the center of a coordinate system The plane cut is performed at a certain x, y, x, y, or z z position (see an exemplary cut in the linked image)
combinatorics - A visual solution to the cube cutting problem . . . You will find that each tetrahedron is made by piecing together two isosceles right triangles with edge lengths 1 1, 1 1, 2–√ 2, and two right triangles with edge lengths 1 1, 2–√ 2, 3–√ 3 This is something you can actually build by cutting the pieces from card stock and taping them together
For someone who loves mathematics - Mathematics Stack Exchange Specializing towards communications on the broad sense (network traffic problems, information theory, silicon chip design and logic, filter design, control ) can get pretty cutting edge mathematically How deep you go depends on what a particular department might specialize in as far as research goes
What is a proper face of a graph? - Mathematics Stack Exchange The paper On the Cutting Edge: Simplified O(n) Planarity by Edge Addition by John Boyer and Wendy Myrvold uses the term quot;proper face quot; I do not know what this term means At a guess, perh
Calculating angles for wood joinery - Mathematics Stack Exchange After the boards are tilted up, B cannot have been cut at 45° if the faces are the join Also, the cut edge is no longer 90° from the face (like the other 3 edges on each board) How do I calculate B and C given an angle A? Essentially, the cut faces need to be parallel to the Z-axis
Mathematics Stack Exchange Q A for people studying math at any level and professionals in related fields