copy and paste this google map to your website or blog!
Press copy button and paste into your blog or website.
(Please switch to 'HTML' mode when posting into your blog. Examples: WordPress Example, Blogger Example)
Contents THE GALOIS ACTION ON DESSIN - University of Chicago We introduce regular dessins, which are dessins that satisfy stringent symmetry requirements that lead to very nice behavior of the cartographic and automorphism groups, as well as a Galois correspondence
Dessins d’enfants on the Riemann sphere Abstra Grothendieck [G] gives a sketch of an exploration of the connections between algebraic curves defined over Q and their fields of definition, and what he calls “dessins d’enfants”, which might be conveniently described as scribbles on topological surfaces the precise definition here
Les dessins de Léonard de Vinci - Archive. org En parcourant la bibliographie, pourtant succincte, qu'il trouvera ci-après, le lecteur comprendra l'impossibilité qu'il y aurait à entreprendre en quelques lignes, et seulement à propos des dessins appartenant au Louvre, une étude de l'œuvre dessiné de Léonard de Vinci, dont le départ avec l'œuvre de ses
Dessins dEnfants - GitHub Pages We start with a general introduction to the theory of dessins d’enfants (children’s drawings) in relation to number theory, geometry, and art We then give an explicit example and describe current work in creating a database of these mathematical objects
496E74726F64756374696F6E20746F20436F6D70616374205269656D616E6 . . . The present text is an expanded version of the lecture notes for a course on Riemann surfaces and dessins d’enfants which the authors have taught for several years to students of the masters degree in mathematics at the Universidad Aut ́onoma de Madrid
Riemann surfaces and dessins d’enfan - Universiteit Utrecht es Belyi's theorem and dessin d'enfants We give a proof of Belyi's theorem, which connect compact Riemann surfaces (and their corresponding algebrai curves) to the dessins of Grothendieck The last part of Chapter 5 will be devoted
What Is. . . a Dessin dEnfant?, Volume 50, Number 7 The deepest open question in the theory of dessins is this: Can the Galois orbits of dessins be distinguished by combi-natorial or topological invariants? That is, is there an effective way to tell whether two dessins belong to the same Galois orbit?