companydirectorylist.com  Global Business Directories and Company Directories
Search Business,Company,Industry :


Country Lists
USA Company Directories
Canada Business Lists
Australia Business Directories
France Company Lists
Italy Company Lists
Spain Company Directories
Switzerland Business Lists
Austria Company Directories
Belgium Business Directories
Hong Kong Company Lists
China Business Lists
Taiwan Company Lists
United Arab Emirates Company Directories


Industry Catalogs
USA Industry Directories












Company Directories & Business Directories

GINWAT CABLE TELEVISION INC

CHISASIBI-Canada

Company Name:
Corporate Name:
GINWAT CABLE TELEVISION INC
Company Title:  
Company Description:  
Keywords to Search:  
Company Address: Centre Rd #200,CHISASIBI,QC,Canada 
ZIP Code:
Postal Code:
J0M1E0 
Telephone Number: 8198552191 
Fax Number: 8198553186 
Website:
 
Email:
 
USA SIC Code(Standard Industrial Classification Code):
484101 
USA SIC Description:
Television-Cable & Catv 
Number of Employees:
1 to 4 
Sales Amount:
$1 to 2.5 million 
Credit History:
Credit Report:
Very Good 
Contact Person:
Raymond Menarick 
Remove my name



copy and paste this google map to your website or blog!

Press copy button and paste into your blog or website.
(Please switch to 'HTML' mode when posting into your blog. Examples:
WordPress Example, Blogger Example)









Input Form:Deal with this potential dealer,buyer,seller,supplier,manufacturer,exporter,importer

(Any information to deal,buy, sell, quote for products or service)

Your Subject:
Your Comment or Review:
Security Code:



Previous company profile:
HOPTIAL CHISASIBI
HEAD START PROGRAM
GOOGOOMS KITCHEN
Next company profile:
GESTION C B C C INC CHANTIER CHISAS
GARAGE EEYOU WHISKEYCHAN
FORT GEORGE ISLAND TOURS










Company News:
  • LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders - GitHub
    LLM2Vec is a simple recipe to convert decoder-only LLMs into text encoders It consists of 3 simple steps: 1) enabling bidirectional attention, 2) training with masked next token prediction, and 3) unsupervised contrastive learning
  • LLM2Vec: 改造Decoder-only LLM以生成高质量text embedding
    最近有研究人员提出了LLM2Vec,一种能将任何decoder-only模型改造成文本表征模型的无监督方法,该方法主要涉及了 双向注意力机制 改造, masked next token prediction 任务,以及无监督对比学习三个部分。
  • LLM2Vec环境配置模型下载【保姆级教程】 - CSDN博客
    llm2vec使用的全流程教程,包括cuda如何切换版本、如何在no-sudo情况下装nvcc、如何安装flash-attn库、如何下载非公开Hugging Face模型等等细粒度教程,包教包会,童叟无欺!
  • LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
    In this work, we introduce LLM2Vec, a simple unsupervised approach that can transform any decoder-only LLM into a strong text encoder LLM2Vec consists of three simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning
  • llm2vec · PyPI
    LLM2Vec is a simple recipe to convert decoder-only LLMs into text encoders It consists of 3 simple steps: 1) enabling bidirectional attention, 2) training with masked next token prediction, and 3) unsupervised contrastive learning
  • 复现LLM2Vec的工作 - 知乎
    LLM2Vec的核心工作在于如何 通过自监督的方式提升LLM的sentence embedding表征能力,并且 不丢失原本LLM的通用能力。 (1)论文首先将LLM的causal attention改成bidirectional attention(应用LLM的通用能力时用causal attention,表征sentence embedding时用bidirectional attention);
  • llm2vec · PyPI · Python 包索引
    LLM2Vec类是HuggingFace模型的一个包装器,用于在仅解码器的LLMs中启用双向性,序列编码和池化操作。 以下步骤展示了如何使用该库的一个示例。
  • LLM2Vec:释放大型语言模型的隐藏力量 - SO Development
    LLM2Vec 是一个转换框架,旨在将笨重的 LLM 转换为紧凑、高保真的向量表示。 与传统的模型压缩技术(例如修剪或量化)不同,LLM2Vec 保留了 语境语义 原始模型,同时减少计算开销 10–100 倍
  • LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
    LLM2Vec is a simple recipe to convert decoder-only LLMs into text encoders It consists of 3 simple steps: 1) enabling bidirectional attention, 2) training with masked next token prediction, and 3) unsupervised contrastive learning
  • llm2vec README. md at main · McGill-NLP llm2vec · GitHub
    LLM2Vec is a simple recipe to convert decoder-only LLMs into text encoders It consists of 3 simple steps: 1) enabling bidirectional attention, 2) training with masked next token prediction, and 3) unsupervised contrastive learning




Business Directories,Company Directories
Business Directories,Company Directories copyright ©2005-2012 
disclaimer