copy and paste this google map to your website or blog!
Press copy button and paste into your blog or website.
(Please switch to 'HTML' mode when posting into your blog. Examples: WordPress Example, Blogger Example)
calculus - What is infinity divided by infinity? - Mathematics Stack . . . One advantage of approach (2) is that it allows one to discuss indeterminate forms in concrete fashion and distinguish several cases depending on the nature of numerator and denominator: infinitesimal, infinite, or appreciable finite, before discussing the technical notion of limit which tends to be confusing to beginners
Uncountable vs Countable Infinity - Mathematics Stack Exchange As far as I understand, the list of all natural numbers is countably infinite and the list of reals between 0 and 1 is uncountably infinite Cantor's diagonal proof shows how even a theoretically complete list of reals between 0 and 1 would not contain some numbers My friend understood the concept, but disagreed with the conclusion
Example of infinite field of characteristic $p\\neq 0$ On the other hand, if we had $\overline{\mathbb{F}_p}\subseteq\mathbb{F}_p(T)$, then we would have that there were some $\frac{f}{g}\in \mathbb{F}_p(T)$ such that $\frac{f}{g}\notin\mathbb{F}_p$ and $\frac{f}{g}\in\overline{\mathbb{F}_p}$ (because $\overline{\mathbb{F}_p}$ is infinite and $\mathbb{F}_p$ is finite), and they would have to be
elementary set theory - What do finite, infinite, countable, not . . . Clearly every finite set is countable, but also some infinite sets are countable Note that some places define countable as infinite and the above definition In such cases we say that finite sets are "at most countable"
Basis for $l^{\\infty}$ - Mathematics Stack Exchange Stack Exchange Network Stack Exchange network consists of 183 Q A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers
Infinite-dimensional manifolds: Fréchet, Banach and Hilbert manifolds . . . There are different generalizations of the concept of differentiable manifold (usually of finite dimension) to the case with infinite dimension Essentially, it is sought that these manifolds with infinite dimension are homeomorphic, as these topological spaces, to vector spaces of infinite dimension, and this gives rise to the following types