copy and paste this google map to your website or blog!
Press copy button and paste into your blog or website.
(Please switch to 'HTML' mode when posting into your blog. Examples: WordPress Example, Blogger Example)
Understanding L1 and L2 norms - Mathematics Stack Exchange I am not a mathematics student but somehow have to know about L1 and L2 norms I am looking for some appropriate sources to learn these things and know they work and what are their differences I am
What is the difference between the Frobenius norm and the 2-norm of a . . . For example, in matlab, norm (A,2) gives you induced 2-norm, which they simply call the 2-norm So in that sense, the answer to your question is that the (induced) matrix 2-norm is $\le$ than Frobenius norm, and the two are only equal when all of the matrix's eigenvalues have equal magnitude
What is the norm of a complex number? [duplicate] In number theory, the "norm" is the determinant of this matrix In that sense, unlike in analysis, the norm can be thought of as an area rather than a length, because the determinant can be interpreted as an area (or volume in higher dimensions ) However, the area volume interpretation only gets you so far
normed spaces - The difference between $L_1$ and $L_2$ norm . . . The $1$-norm and $2$-norm are both quite intuitive The $2$-norm is the usual notion of straight-line distance, or distance ‘as the crow flies’: it’s the length of a straight line segment joining the two points
linear algebra - Understanding of the theorem that all norms are . . . This proof is really a way of saying that the topology induced by a norm on a finite-dimensional vector space is the same as the topology defined by open half-spaces; in particular, all norms define the same topology and all norms are equivalent There are other ways to prove that using the Hahn-Banach theorem
How do I find the norm of a matrix? - Mathematics Stack Exchange I learned that the norm of a matrix is the square root of the maximum eigenvalue multiplied by the transpose of the matrix times the matrix Can anybody explain to me in further detail what steps I need to do after finding the maximum eigenvalue of the matrix below?