copy and paste this google map to your website or blog!
Press copy button and paste into your blog or website.
(Please switch to 'HTML' mode when posting into your blog. Examples: WordPress Example, Blogger Example)
Question #71ce2 - Socratic H^+ + OH^--> H_2O when the acid was added to the resulting solution The H^+ and OH^- react in a 1:1 ratio This tells us that the number of moles of H^+ used will be equal to the number of OH^- moles in solution Likewise, 2 moles of lithium produces 2 moles of OH^- This is also a 1:1 ratio
Question #c548d - Socratic Question 1: K_ (sp)= 1 1 xx10^ (-11) Question 2: s= 4 9 xx10^ (-12)M Quest (1) determine the ksp for magnesium hydroxide Mg (OH)_2 where the molar solubility of Mg
Question #9f499 - Socratic Explanation: Your starting point here is the pH of the solution More specifically, you need to use the given pH to determine the concentration of hydroxide anions, #"OH"^ (-)#, present in the saturated solution
Question #e7848 - Socratic Similarly, OH^- becomes H_2O, indicating a gain of a H^+ ion So, you can say that NH_4^+ is the acid, and OH^- is the base Conjugates are basically the "other" term For every acid, you have a conjugate base (that no longer has that extra H^+ ion), and for every base, you have a conjugate acid (that has an extra H^+ ion)
Can you give the IUPAC name for the following (CH_3)_3C-OH . . . - Socratic So this is a propanol derivative: "2-methylpropan-2-ol" For "isopropyl alcohol", H_3C-CH (OH)CH_3, the longest chain is again three carbons long, and C2 is substituted by -OH, so "propan-2-ol" I think this is right, and I haven't broken any arcane rule Both names seem to be unambiguous
Question #6b37a + Example - Socratic The longer the alkyl chain attached to the hydroxyl head, usually the more basic the conjugate base is (and the less nucleophilic)
Question #d6b18 - Socratic We want the standard enthalpy of formation for Ca (OH)_2 Thus, our required equation is the equation where all the constituent elements combine to form the compound, i e : Ca +H_2+O_2->Ca (OH)_2 Let us now write down the given equations: [The first equation mentioned is incorrect, and so I have revised it ] (1) 2H_2 (g) + O_2 (g)->2H_2O (l) and DeltaH_1=-571 66 kJmol^-1 (2) CaO (s) + H_2O (l
Question #18488 - Socratic The degree of dissociation sf (alpha=0 0158) sf (K_b=2 51xx10^ (-6)color (white) (x)"mol l") Triethyamine is a weak base and ionises: sf ( (CH_3)_3N+H_2Orightleftharpoons (CH_3)_3stackrel (+) (N)H+OH^-) For which: sf (K_b= ( [ (CH_3)_3stackrel (+) (N)H] [OH^ (-)]) ( [ (CH_3)_3N])) Rearranging and taking -ve logs of both sides we get the
How many grams of \text {NH}_4\text {OH} do I need to make . . . - Socratic "6 3072 g" >>"Molarity" = "Moles of solute" "Volume of solution (in litres)" "0 45 M" = "n" "0 4 L" "n = 0 45 M × 0 4 L = 0 18 mol" You need "0 18 mol" of "NH"_4"OH" Molar mass of "NH"_4"OH" is "35 04 g mol" Mass of solute = 0 18 cancel"mol" × "35 04 g" cancel"mol" = "6 3072 g"
Question #71b91 - Socratic Since water is in excess, "67 7 g MgO" are needed to produce "98 0 g Mg(OH)"_2 Balanced equation "MgO(s) + H"_2"O(l)"rarr"Mg(OH)"_2("s")" Moles magnesium hydroxide Start with the given mass of "Mg(OH)"_2 and convert it to moles by dividing by its molar mass ("58 319 g mol") Since molar mass is a fraction, "g" "mol", we can divide by multiplying by the reciprocal of the molar mass, "mol" "g