copy and paste this google map to your website or blog!
Press copy button and paste into your blog or website.
(Please switch to 'HTML' mode when posting into your blog. Examples: WordPress Example, Blogger Example)
Modulo Ruins the Legend题解 同余 - CSDN博客 Since we want to ruin the legend, please tell her the minimum sum of elements modulo m after the operation Note that you should minimize the sum after taking the modulo
2022ICPC杭州站A题解 - 洛谷专栏 - Luogu A Modulo Ruins the Legend 题目大意 : 给定一个长度为 n 的整数序列 a1 、 a2 、……、 an ,可以选择俩个整数个 s , d 将 ai 均加上 s+ id 并需要对操作后的新序列和对 m 取模后最小。 考察知识点 : 扩展欧几里得算法 (exgcd) 解题过程 : ans mod m = ans−k1 ∗m = ∑i=0n ai
2022 杭州 A - ycllz - 博客园 A Modulo Ruins the Legend 因为是%m的意义下 我们尽量一直保持在%意义下 不然会很难注意一些不合法情况 原式可变形为(n*(n+1) 2 d + ns + sum )%m 最小 我们设a=n*(n+1) 2 b=n (ad+bs+sum)%m 设g1=gcd (a,b) 里
2022 Hangzhou A. Modulo Ruins the Legend | GitSteve1025 A Modulo Ruins the Legend 求 求 (∑ i = 1 n a i + n s + n (n + 1) 2 d) 由 裴 蜀 定 理 知 由 裴 蜀 定 理 知 a x + b y = k × g c d (a, b) 令 原 式 令 s u m = ∑ i = 1 n a i ⇒ 原 式 = s u m + k × g c d (a, b) (s u m + k × g c d (a, b))
Problem - A - Codeforces Since we want to ruin the legend, please tell her the minimum sum of elements modulo m m after the operation Note that you should minimize the sum after taking the modulo
GYM104090A Modulo Ruins the Legend - exgcd - 博客园 GYM104090A Modulo Ruins the Legend - exgcd - 题目链接: https: codeforces com gym 104090 problem A 题解: 转化一下发现只需要求满足下式的解: ns+ n×(n+1) 2 d≡C(mod m) n s + n × (n + 1) 2 d ≡ C (mod m) 设 a=n,b= n(n+1) 2,p = gcd(a,b) a = n, b = n (n + 1) 2, p = g c d (a, b)