copy and paste this google map to your website or blog!
Press copy button and paste into your blog or website.
(Please switch to 'HTML' mode when posting into your blog. Examples: WordPress Example, Blogger Example)
Why $\\operatorname{Spin}(n)$ is the double cover of $SO(n)$? You can let $\text {Spin} (n)$ act on $\mathbb {S}^ {n-1}$ through $\text {SO} (n)$ Since $\text {Spin} (n-1)\subset\text {Spin} (n)$ maps to $\text {SO} (n-1)\subset\text {SO} (n)$, you could then use the argument directly for $\text {Spin} (n)$, using that $\text {Spin} (3)$ is simply connected because $\text {Spin} (3)\cong\mathbb {S}^3$ I'm not aware of another natural geometric object
Fundamental group of the special orthogonal group SO(n) Question: What is the fundamental group of the special orthogonal group $SO (n)$, $n>2$? Clarification: The answer usually given is: $\mathbb {Z}_2$ But I would like
lie groups - Lie Algebra of SO (n) - Mathematics Stack Exchange Welcome to the language barrier between physicists and mathematicians Physicists prefer to use hermitian operators, while mathematicians are not biased towards hermitian operators So for instance, while for mathematicians, the Lie algebra $\mathfrak {so} (n)$ consists of skew-adjoint matrices (with respect to the Euclidean inner product on $\mathbb {R}^n$), physicists prefer to multiply them
How connectedness of $O(n)$ or $SO(n)$ implies the connectedness of . . . So, the quotient map from one Lie group to another with a discrete kernel is a covering map hence $\operatorname {Pin}_n (\mathbb R)\rightarrow\operatorname {Pin}_n (\mathbb R) \ {\pm1\}$ is a covering map as @MoisheKohan mentioned in the comment I hope this resolves the first question If we restrict $\operatorname {Pin}_n (\mathbb R)$ group to $\operatorname {Spin}_n (\mathbb R
Prove that the manifold $SO (n)$ is connected The question really is that simple: Prove that the manifold $SO (n) \subset GL (n, \mathbb {R})$ is connected it is very easy to see that the elements of $SO (n
Showing SO(n) is a compact topological group for every n You'll need to complete a few actions and gain 15 reputation points before being able to upvote Upvoting indicates when questions and answers are useful What's reputation and how do I get it? Instead, you can save this post to reference later
How to find the difference between the sons and mothers age if it . . . A son had recently visited his mom and found out that the two digits that form his age (eg :24) when reversed form his mother's age (eg: 42) Later he goes back to his place and finds out that this whole 'age' reversed process occurs 6 times And if they (mom + son) were lucky it would happen again in future for two more times
Diophantus Lifespan - Mathematics Stack Exchange "The son lived exactly half as long as his father" is I think unambiguous Almost nothing is known about Diophantus' life, and there is scholarly dispute about the approximate period in which he lived